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Abstract—Community detection and evaluation is an impor-
tant task in graph mining. In many cases, a community is
defined as a subgraph characterized by dense connections or
interactions among its nodes. A large variety of measures have
been proposed to evaluate the quality of such communities – in
most cases ignoring the directed nature of edges. In this paper,
we introduce novel metrics for evaluating the collaborative
nature of directed graphs – a property not captured by
the single node metrics or by other established community
evaluation metrics. In order to accomplish this objective, we
capitalize on the concept of graph degeneracy and define a
novel D-core framework, extending the classic graph-theoretic
notion of k-cores for undirected graphs to directed ones. Based
on the D-core, which essentially can be seen as a measure of
the robustness of a community under degeneracy, we devise a
wealth of novel metrics used to evaluate graph collaboration
features of directed graphs. We applied the D-core approach
on large real-world graphs such as Wikipedia and DBLP and
report interesting results at the graph as well at node level.
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I. INTRODUCTION

The Web, social network, and citation graphs form a
context where the detection and evaluation of communities
is a challenging task. The research methods in this area have
mainly capitalized on the Hub/Authority concepts [21], [18]
evaluating communities based on the centrality of nodes in
terms of incoming/outgoing links. We claim that inherent
mechanisms of community creation and evolution are not
solely based on the Hub/Authority concepts. An important
constituent of such a mechanism, generally neglected, is
the community cohesion in terms of a dense distribution
of in/outlinks within the community – as opposed to sparse
connections across them. We are interested in quantifying
the degree of cohesion of a community sub-graph as a
measure of collaboration among its members. Here we have
to stress the distinguishing feature of the graphs under
concern in this paper: the directed nature of the edges –
representing endorsement, recommendation, citation, and, in
general, non-symmetric relationship among entities.

In order to study this collaboration aspect we capitalize on
the k-core concept – an established technique for identifying

dense graph areas with dense edge connectivity. A core is
broadly defined as a maximum size subgraph of a graph
that is coherent and dense in the sense that for every node
in this subgraph there are are least k incident edges that are
adjacent to vertices of the same subgraph (formal definitions
follow in Section 2).

The objective of our study is to deal with and evaluate the
“collaborative” behavior of communities (represented as D-
cores of a directed graph) rather than dealing with authorities
or hubs. This work follows up the work in [11] on evaluating
collaboration in undirected graphs The paper contributions
are the following:

– we extent the notion of k-core by introducing the D-core
concept on graphs where the edges are directed. Such
graphs emerge naturally from social/citation networks
and the Web. D-cores constitute dense directed sub-
graphs of the original one involving intensive and
mutual collaboration in terms of directed links.

– we define new structures and metrics for evaluating the
collaborative nature of directed graphs. Such are the D-
core matrix for a graph, its frontier, and a series of novel
metrics to evaluate: a. the robustness of the directed
graph under degeneracy, as a metric of cohesiveness
and hence the collaboration among the members of the
graph under study and b. the dominant patterns of the
graph with respect to inlink/outlink trade offs indicating
macroscopic graph patterns related to whether the graph
is extrovert or “selfish”. A salient feature of our work is
the low (in fact optimal) complexity for computing the
D-core structures and the related structures and metrics.

– Extensive experimental evaluation: We conducted large
scale experiments in two real-world, large scale graphs:
the (English) Wikipedia - 2004 edition, and the DBLP
graph. We computed and explored the respective D-
cores matrix, frontiers and metrics, and we derived
interesting results and observations both at the macro-
scopic (graph) and at the microscopic (node) level.

We claim that the D-core concept and the relevant structures
and metrics that we define in this paper form a set of



tools for efficient and valid evaluation of cohesiveness and
collaboration in directed networks.

II. RELATED WORK

A thorough review on community detection in graphs is
offered by Fortunato [8]. In that work techniques, methods,
and data sets are presented for detecting communities in
sociology, biology and computer science, disciplines where
systems are often represented by graphs. Most existing
relevant methods are presented, with a special focus on
statistical physics, including discussion of crucial issues like
the significance of clustering and how methods should be
tested and compared against each other.

In recent literature, various metrics are proposed to eval-
uate the graph structure of a social network. Such are
“Betweenness” [21], “Centrality” [18], Clustering coefficient
(a measure of the likelihood that two associates of a node
are associates themselves). A higher clustering coefficient
indicates a greater “cliquishness”, i.e. cohesion degree or
density. Of special interest here is the eigenvector centrality
– a measure of the importance of a node in a network. It
assigns relative scores to all nodes in the network based on
the principle that connections to nodes having a high score
contribute more to the score of the node in question. Other
measures include “path length” (i.e. distances between pairs
of nodes in the network), “prestige/authority”, a measure in
directed graphs to describe a node’s centrality and “radial-
ity”, a notion representing the capacity of an individual to
rech out the whole network.

Other interesting measures include “Structural cohesion”.
While cohesion metrics have been studied a lot in sociology
there does not seem to be a general agreement. Cohesion
in its essence is the ability of any network not to split up
when changes are made and from this point of view ideas
like the density of interactions in the network [1], [7], [9]
and the relational distance between nodes [14] are used as
basic features for cohesion. The issues with these ideas are
that -as it is also noted in [17]- the cohesion of a group
could depend on only one node; additionally, these ideas are
conceived for a non-directed network where each interaction
is in both directions thus making these metrics not directly
applicable in a directed network. In [17] the cohesion, in
a connected group of nodes, is defined by the number of
nodes that, if removed, would disconnect the group. The
measurement of this feature is connected with the number
of paths a node has to another one which would make the
calculation of the cohesion in a large graph computationally
difficult.

In [13] an idea similar to the D-cores is used to filter
out less significant nodes, by pruning them out. The main
difference to our approach is that it removes only a sufficient
portion of the nodes. The cores are then fed to a generalized
HITS algorithm used to expand the communities within
them. In [3], greedy approximation algorithms are proposed

for finding the dense components of a graph. Both undirected
and directed graphs are examined. In the case of directed
graphs the vertices are divided in hubs (S) and authorities
(T), then based on a value of |S|/|T| a greedy algorithm
removes the vertex of minimum degree from either S or T
until both sets are empty. Finally, a fractional version of the
k-core structure was introduced in [11] towards evaluating
and detecting collaboration communities in bipartite graphs
where the edges represent relations between different entities
such as papers and authors.

III. D-CORES AND RELEVANT STRUCTURES

In this section we introduce the D-core concept along with
the structures that enable finding the optimal subgraphs (with
regard to cohesion) and identifying highly collaborative parts
in directed graphs.

A. Preliminaries

Let G = (V,E) be a graph. A subgraph H of G is a
graph obtained by G after removing vertices or edges and
we denote this by H ⊆ G. Given a vertex x ∈ V we define
its degree as the number of vertices that are adjacent with
x in G and we denote it by degG(x). The min-degree of a
graph G is defined as

δ(G) = min{x | degG(x) | x ∈ V (G)}.

A k-core in a graph G is a subgraph H of G where
δ(H) ≥ k. The degeneracy of a graph G, denoted by δ∗(G)
is the maximum k for which G contains a non-empty k-
core. k-cores are fundamental structures in graph theory
and their study dates back to the 60’s [5], [15], [20]. The
parameter of degeneracy appeared with several names such
as width [16], linkage [10], and the coloring-number [4]. The
existence of a k-core in a graph indicates the existence of a
highly interconnected community where every node is linked
with at least k other nodes. The existence of k-cores of
large size in sufficiently dense graphs has been theoretically
studied by [19] for random graphs generated by the Erdős-
Rényi model [6]. As shown in [19], a k-core whose size is
proportionate to the size of G (i.e. a “giant” k-core) appears
in a random graph with n vertices and m edges when m
reaches a threshold ck ·n, for some constant ck that depends
exclusively on k.

Here, we extend the notion of a k-core to directed graphs
so that they can represent well interconnected communities
on networks whose links are of directional nature, i.e. are
represented by directed edges. For this, we introduce below
some definitions.

B. D-cores

Let D = (V,E) be a digraph that is a set V of vertices and
a set E of directed edges between them. Each edge e ∈ E
can be seen as a pair e = (v, u) and we say that v is the tail
of e while u is the head of e. We denote the set of vertices of
a digraph D by V (D). Given a vertex x ∈ V , its in-degree,



we denote it by degin
D(x), is the number of in-links of x, i.e.

the edges in D with x as a head. Similarly, the out-degree
of x, we denote it by degout

D (x), is the number of out-links
of x, i.e. edges in D with x as a tail. The min-in-degree and
the min-out-degree of a digraph D are defined as

δin(D) = min{x | degin
D(x) | x ∈ V (D)} and

δout(D) = min{x | degout
D (x) | x ∈ V (D)}

respectively. Given two positive integers k, l and a digraph
D = (V,E), a (k, l)-D-core of D is a maximal size sub-
digraph F of D where δin(F ) ≥ k and δout(F ) ≥ l; if no
such digraph exists then the (k, l)-D-core of D is the empty
digraph.

Given a digraph D, we denote by DCk,l(D) the (k, l)-
D-core of D. We also denote by dck,l(D) the size of
DCk,l(D), i.e. the number of its vertices. As D will always
be the network under study, we may just use the simpler
notations DCk,l and dck,l instead.

  

  

Figure 1. Two portions of a digraph. The one in the left does not contain
any non-trivial (k, l)-core and the one in the right is a (2, 2)-core.

The intuition behind (k, l)-D-cores is to find a subgraph
where all nodes have enough out-links and in-links to the
rest of it. Clearly, it is not enough for a node to have big in-
degree and/or out-degree in order to be a member of such a
core. What counts, on the top of this, is that the node forms
part of a community where each of its members satisfy the
same in-degree and/or out-degree requirements with respect
to all the other community members (see Figure III-B for
an example). This indicates that nodes in a D-core exhibit a
strong collaboration behavior among them.

The detection of DCk,l is computationally easy and can
be done by the following procedure:

Procedure Trimk,l(D)
Input: A digraph D and positive integers k, l
Output: DCk,l(D)

1. let F ← D.
2. while there is a node x in F such that

degin
F (x) < k or degout

F (x) < l,
delete node x from F .

3. return F .

Let L = (v1, . . . , vm) be a layout of the vertices of D. For
every i = 1, . . . , n, we denote by Di the digraph induced

by the vertices in {v1, . . . , vi}. We say that L is (k, l)-
eliminable if for every i ∈ {0, . . . , n}, either degin

Di
(vi) < k

or degout
Di

(vi) < l.
The following Lemma on (k, l)-D-cores generalizes the

classic min-max result of [16] (see also [10], [12]).
Lemma 1: Given a digraph D and two positive integers

k and l, the (k, l)-D-core is empty if and only if there exists
a (k, l)-eliminable layout of V (D).

Lemma 1 essentially indicates that the elimination pro-
cedure of the algorithm Trimk,l(D) works correctly and
(optimally) runs in O(m) steps where m = |E(G)|. The
proof is easy and follows the arguments of [10] for the
non-directed case (see also [2]). In our implementation of
this procedure, DCk,l(D) is incrementally computed for all
pairs of k and l.

C. Degeneracy of digraphs
The degeneracy of a directed digraph differs radically

from its undirected counterpart. Actually, it has a two-
dimensional nature since different choices of the lower
bounds to the number of incoming/outcoming edges result to
different D-cores. The degeneracy of a digraph D is defined
as follows.

δ∗(D) =
1

2
max{δin(H) + δout(H) | H ⊆ D}. (1)

The intuition behind the definition of δ∗(D) is to return the
maximum r (for some pair k, l where k+ l ≥ 2r) such that
D contains a non-empty (k, l)-D-core (δ∗ takes semi-integer
values). Also the value of δ∗(D) may correspond to multiple
(k, l)-D-cores for different choices of k and l (those where
k + l = 2 · δ∗(D)).

Notice that if we replace each edge of a graph by two
opposite direction edges, the degeneracy of the resulting
digraph is equal to the degeneracy of G. Thus δ∗ is indeed
a valid generalization of undirected degeneracy to directed
graphs. We stress that δ∗ is the first density parameter on
digraphs that takes into account Hub/Authority trade offs
as it differs radically (and is not comparable) with previous
digraph density measures such as the ones defined in [3]
and [13]. A powerful extension of the classic notion of a
k-core was given in [2] where the k-core is defined as a set
of vertices where some general vertex property function is
bounded. While the results in [2] can also provide a natural
concept of k-core for directed graphs, they are not able
to capture the “two-dimensional” nature of our (k, l)-core
concept where degree bounds are applied simultaneously on
both the in-degrees an the out-degrees.

Let τ be a real number in the interval [0, π/2] representing
an angle. The τ -degeneracy of a digraph D is defined as
follows.

δ∗τ (D) = max{dke+ dle
2

| G contains a non-

empty (k, l)-D-core where k = r · cos(τ) and
l=r · sin(τ) for some r where r2 = l2 + k2}
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Figure 2. The D-core matrices of the Wikipedia 2004 digraph (upper) and the DBLP digraph (bottom)

In the above definition one may see each pair (k, l) as a point
of a Cartesian system of coordinates, corresponding to the
D-core DCk,l(D). To compute δ∗τ (D), we essentially follow
the τ -slope segment starting from (0, 0) until DCk,l(D)
becomes empty along this line. The last such non-empty D-
core is the one determining the degeneracy of D with respect
to the angle τ . The value of τ reflects the Hub/Authority
trade-off in the considered D-cores and we refer to it as
H/A-angle.

Again it is easy to observe that δ∗π/4 deteriorates to classic
degeneracy when we replace each edge of an undirected
graphs by two (opposite) directed edges. Observe that δτ
can also provide an another definition of δ∗, equivalent to
the one in (1), as δ∗(D) = max{δ∗τ (D) | τ ∈ [0, π/2]}.
D-core matrix. Our objective is to define a series of digraph-
based metrics, based on directed degeneracy, in order to
evaluate the dense collaboration of nodes in networks whose
links have directional nature. The whole network is repre-
sented by a digraph D and there is a unique DCk,l for each
k, l ≥ 0. The sizes dck,l, (for k, l ≥ 0) define an (infinite)
matrix AD(k, l) = (dck,l)k,l∈N that we call D-core matrix
of D.

We identified this matrix for the digraph formed by the
Wikipedia (2004, English edition). The nodes correspond to
Wikipedia pages and each directed edge e = (x, y) is a link
from page x to page y. Each cell in this matrix AD(k, l)
stores the size (dck,l)k,l∈N of the respective DCk,l. The
result is depicted in Figure 2. As there is no Wikipedia
entry with more than 51 out-links or more than 43 in-
links we restrict this matrix to its lower 51×43 portion. For
each digraph D that we examine, we call this matrix D-core

matrix of D. According to Figure 2, the value of δ∗(DWiki)
for the Wikipedia digraph DWiki is obtained in cell (38, 41)
and is equal to 38+41

2 = 39.5. In other worlds, 39.5 is the
half of the Manhattan distance between a cell of the D-core
matrix of DWiki and the cell (0, 0); in our case this cell is
(38, 41) and this justifies the value of δ∗(DWiki).

D. Digraph Degeneracy Frontiers

The following observation follows directly from the def-
initions:

Observation 1: For every k, k′, l, l′ where k ≥ k′ and
l ≥ l′ it holds that DCk,l is a sub-digraph of DCk′,l′ and
therefore, dck,l ≤ dck′,l′ .

We call a cell (k, l) frontier cell for a digraph D if dck,l >
0 and dck+1,l+1 = 0 – thus the frontier consists of the
cells corresponding to the last non-empty D-cores as k or l
increase. The set of frontier cells of a digraph D is denoted
as F (D). Formally:

F (D) = {(k, l) : dck,l > 0 & dck+1,l+1 = 0}

See Figure 2 where the frontier appears as the dark color
contour surrounded by 0 values.

The (k, l)-D-cores corresponding to the frontier cells are
the frontier D-cores of D and all of them together constitute
the D-core frontier of D. Intuitively, these D-cores exhibit the
highest collaboration behavior in the network for different
Hub/Authority trade-offs (i.e. H/A-angles).

Let kmax be the maximum k for which (k, 0) ∈ F (D)
and lmax be the maximum l for which (0, l) ∈ F (D). We
call (kmax, 0), (0, lmax) extreme cells of F (D). Observe that
number of frontier cells is always equal to kmax+ lmax− 1.



Thus the extreme DC0,lmax
represents the D-core with no in-

links and a maximum number of out-links. In the Wikipedia
graph the DC0,50 represents the subgraph bearing to a
maximum the Hub-property (i.e. many out-links thus a very
“extrovert” D-core). On the contrary, the extreme DCkmax,0

represents the D-core with no out-links and a maximum
number of in-links. In case of the Wikipedia digraph, this
graph is DC42,0.

IV. DIGRAPH COLLABORATION INDICES

In this section we treat the issue of choosing the optimal
D-core on the frontier, as the most representative of the
specific graph D-cores, with regard to the collaborative
features as implemented via dense in/out links connectivity.
To this end, we take into account different properties of
digraph degeneracy, especially with regard to the frontier.
Intuitively we are interested in the dominant trend in the
frontier D-cores i.e. whether they contain more in-links or
out-links. The other important issue is the robustness of the
D-cores in terms of degeneracy. According to the previous
definitions, this is proportional to the Manhattan distance
of the extreme frontier points from the matrix origin, i.e.
cell (0, 0). Following this line, we define a series of metrics
quantifying distinct measures of robustness.

Balanced collaboration index (BCI). One possibility is
to choose a D-core with a balanced rate of in/out links.
Thus we define the balanced collaboration index of D as
the unique integer r for which DCr,r is a frontier (r, r)-
D-core. In other words, we find the coordinates of the
cell where the diagonal intersects the D-core-frontier of D.
Formally, the balanced collaboration index of D, BCI(D), is
equal to δ∗π/4(D) (i.e. the H/A-angle is of 45◦). The choice
of the diagonal focuses on the D-cores with a balanced
Hub/Authority trade-off - thus containing vertices that are
connected to others, on average, with equal lower bounds
their in and out links.

Optimal collaboration index (OCI). In this case we
choose the frontier D-cores DCk,l for which (k + l)/2 is
maximized. In terms of the D-core diagram, the position of
such D-core has the maximum (among other frontier D-cores)
Manhattan distance from the origin (0,0) and corresponds.
Formally the optimal collaboration index, OCI(D), is equal
to δ∗(G). Notice that the frontier (k, l)-D-cores where k+l

2
is maximized can be multiple and may correspond to several
H/A-angles.

Inherent collaboration index (ICI). This index aims to
represent the inherent hubs/authority trade-off in the graph
and is based on the average ratio of in-links to out-links
of the vertices in the digraph. Based on this we define the
average H/A-angle of a digraph D as follows.

ρav = tan−1(
1

|V (DC1,1(D))|
·

∑
v∈V (DC1,1(D))

degout
D (v)

degin
D(v)

).

To make the above formula feasible, we excluded vertices
with zero in or out links, i.e. we applied the averaging inside
the D-core DC1,1(D). The inherent collaboration index,
ICI(D), of the digraph D is is equal to be δ∗ρav(D) where
ρav is defined as above.

Thus we use the terms: BCI/OCI/ICI - optimal D-core(s)
respectively for the D-cores corresponding to each particular
optimization. See Figure 2 for a depiction of the above
indices on the Wikipedia D-cores matrix frontier.

Average collaboration index (ACI). This index is the
average of the τ -degeneracies over all possible H/A-angles
corresponding to the cells of the D-core frontier of D. Thus,
the average collaboration index, ACI(D), of the digraph D
is defined as

1

|F (G)|
∑

(k,l)∈F (D)

δ∗
tan−1(lk)

(D).

In other words, ACI(D) is the half of the average Manhattan
distance of the frontier cells of D. Alternatively, we may
define ACI(D) =

∑
(k,l)∈F (D)(k+l)

2·|F (D)| .
Robustness. Notice that the maximum value of the av-

erage collaboration index of a digraph D with extreme
positions (kmax, 0) and (0, lmax) is obtained in the case
where

F (D) = {(kmax, 0), (kmax, 1), . . . , (kmax, lmax),

(kmax − 1, lmax), . . . , (0, lmax))}.

In this extreme and, in a sense, ideal case, the digraph D has
the maximum possible robustness under degeneracy with re-
spect to its extreme positions and the Average Collaboration
Index of such a graph is equal to

2kmaxlmax − kmax − lmax +
(
kmax+1

2

)
+
(
lmax+1

2

)
2 · |F (D)|

.

We denote the above quantity by µ(kmax, lmax). That way,
we define the robustness of a digraph D with extreme
positions (kmax and lmax) as the ratio:∑

(k,l)∈F (D)(k + l)

µ(kmax, lmax)

and it always results in a real value in [0, 1].
The above definition implies that the robustness is essen-

tially the the surface enclosed between the F (D) frontier
and the (0, 0), . . . , (kmax, 0), (0, 0), . . . (0, lmax) coordinates
divided by µ(kmax, lmax). This represents the endurance of
the D-core graph to degeneracy, i.e. the degree of cohesion
among the graph nodes – in terms of globally distributed
in/out links.

A. Set frontiers and indices

Let X be a subset of nodes in a digraph D. In a simi-
lar manner as above we define the D-core matrix of X ,
DCX

k,l(D), as the cells (k, l) where X is a subset of DCk,l

and dck,l > 0. Similarly we define the D-core frontier of X ,



Figure 3. The SCCs sizes on the diagonal D-cores(i, i) and their hierarchical containment, Wikipedia 2004 (upper), DBLP (bottom).

Wikipedia Continental United States
Congress Congress

BCI(k, l)/Size 38 9 19
of optimal DC (38,38)/237
ICI(k, l)/angle/ 36.5/(40,33) 10.8 22,18
size of optimal DC 51.34/190
OCI(k, l)/〈(k, l)/angle 39.5/〈(43,36) 19.7 42.8
/size of optimal DC〉 /47,66/〉228

〈(41,38)
45,42/233〉

Robustness.Local x 0.78 0.389
Robustness. Global 0.96 0.1 0.791
ACI 32.46 9.5 20.31
AC H/A-angle (degrees) 41.8 54.57 56.957
AC H/A-angle (rads) 0.73 0.95 0.994

Progressive Congress Gregorian
Conservative of Vienna Calendar

Party
of Canada

BCI(k, l)/Size 8 12 27
of optimal DC
ICI(k, l)/angle/ 8.7 13.11 28.24
size of optimal DC
OCI(k, l)/〈(k, l)/angle 1.50 8.23 42.12
/size of optimal DC〉
Robustness.Local 0.166 0.153 0.54
Robustness. Global 0.762 0.861 0.85
ACI 16.042 12.474 23.904
AC H/A-angle (degrees) 13.316 34.76 51.458
AC H/A-angle (rads) 0.232 0.606 0.898

Table I
COLLABORATION INDICES VALUES FOR THE WIKIPEDIA GRAPH.

as the set of the extreme non-empty D-cores corresponding to
the cells (k, l) where dck,l > 0 and dck+1,l+1 = 0. Thus:

FD(X) = {(k, l) : X ⊆ D & dck,l > 0 & dck+1,l+1 = 0}

The D-core matrix of a nodes set X ⊆ V (D), is defined
in an analogous way as in subsection IV-A, represents
the capacity of the nodes of X to be part, all-together, in

subgraphs with strong mutual linking and thus presenting a
noteworthy collaboration behavior.

The four collaboration indices for a set X ⊆ V (D) as
del as its robustness are defined analogously as in previous
sections. We omit the definitions due to lack of space.

These indices can be applied also to every individual
node x ∈ V (D) by setting X = {x}. In this case, all
above notations and concepts can also be used for nodes
instead of sets of nodes. Notice that all indices defined in
this subsection are anti-monotone. In particular:

Observation 2: Let X1 and X2 are subsets of the vertex
set of some digraph D. If X1 ⊆ X2, then the balan-
ced/optimal/inherentcollaboration indexof X1will beat least
the balanced/optimal/inherent collaboration index of X2.

V. EXPERIMENTAL EVALUATION

In this section we present the experiments we performed
applying the above algorithms and definitions on real-world
data sets, obtaining valuable and convincing results.

A. Data sets description

The Wikipedia dataset is a snapshot of the English version
of Wikipedia, the digraph consists of about 1.2M nodes and
3.662M links. The snapshot depicts Wikipedia as it was in
the January of 2004 and was extracted from a database dump
containing the entire history of the encyclopedia; which can
be found at http://download.wikipedia.org/.

In our experiments, we also used a popular biblio-
graphic dataset derived from the available snapshot of DBLP,
which is freely available in XML format at: http://dblp.uni-
trier.de/xml/. We obtained a digraph structure from the
dataset as follows: authors correspond to the nodes of the
digraph and each directed edge e = (x, y), express the fact



that author x cited in his/her papers a paper of author y.
That way, obtain a digraph containing about 825K author
nodes and 351K edges. The vast majority of them have no
in-/out- links (about 800K) thus we remain with the rest
25K authors that are minimally connected.

B. Algorithms complexity

The proposed D-core algorithm is of low complexity
thus D-core computations are feasible even in large scale
digraphs. As shown in procedure Trimk,l(D) in subsection
III-B, the computation of each D-core is linear to the number
of its edges and thus optimal. Moreover as the digraphs we
examine are sparse, the identification of the D-cores is very
fast.

The D-core matrix computation, starts from the original
digraph and reduces it until the degeneracy leads to an empty
one. This procedure involves about (40x50) ∼2000 repeated
executions, in the case of the Wikipedia digraph, of the basic
Trimk,l(D) procedure. Depending on the implementation,
each execution can be done on commodity desktops in the
scale of minutes even in million scale sized graphs, as it is
also noted in [2] for the case of non directed graphs.

C. Experimental methodology

The experimental method for processing the previously
mentioned digraphs involved the following phases:
1. D-core matrix computation: this involves computing the
D-core DCk,l subgraph, where (k, l) ∈ {0, . . . , kmax} ×
{0, . . . , lmax} where (kmax, 0), (0, lmax) are the extreme
cells of F (D). According to Observation 2, a D-core DCi,j

is a subgraph of every D-core DCi′,j′ where i′ ≤ i and
j′ ≤ j. Based on this property, we can efficiently compute
e.g. the D-core DC0,2 having computed and stored in
memory the D-core DC0,1. Therefore, in order to compute
the entire D-core diagram, we started by computing only the
D-cores in row 0 and column 0 and used those two sets of
D-cores to “fill in” the rest of the matrix (note that the D-
cores DC0,1 and DC1,0 are not correlated so we need to
compute both but we only need one to fill the rest of the
matrix). Each D-core occupies moderate storage space, such
that the whole D-cores matrix occupies less than 4GB of disk
space, so storing them for subsequent use was an obvious
choice.
2. Collaboration indices computation: We compute the val-
ues that optimize the criteria set along with the sizes of the
corresponding D-cores. Namely, we compute the correspond-
ing BCI/ICI/ OCIACI, indices and the Robustness.
3. Strongly Connected Components (SCCs): for each D-core
DCi,i – i.e. on the D-core matrix diagonal we computed
the strong connected components. A strong connected com-
ponent of a digraph D is a maximal sub-digraph where
every two vertices are in a directed cycle. SCCs indicate
groups of strong cohesiveness in the D-core. See Figure 3
for detailed view on the SCCs size evolution and hierarchical
relationships as i, running along the D-core matrix diagonal,

(k, k) # SCCs Top-k Thematic Focus
SCCs size

1 1024 24 Wisconsin
10 Cynodonts Species
10 Iowa
10 Eurovision
5 History of the British penny
5 Submarines

10 Wyoming
2 23 30 Music albums

10 Eurovision
6 Cynodonts Species
6 Metal Deficiencies
5 History of the British penny
3 Helladic

3 13 23 Extinct species
10 Eurovision Young Dancers
6 Metal Deficiencies
6 Books
5 Cynodonts Species
5 History of the British penny

4 12 26 poker jargon
10 Eurovision
6 Metal Deficiencies
5 History of the British penny
5 films by decade
4 Fayette

5 8 26 poker jargon
17 Sibley-Monroe checklist
10 Eurovision
7 North Carolina

. . . . . .

38 1 Dates

Table II
THE THEMATIC FOCUS OF THE WIKIPEDIA SCCS FOR INCREASING

DEGENERACY ALONG THE BCI AXIS.

increases for both datasets considered. This hierarchy is
depicted by a collection of rooted trees where the roots
correspond to the strong connected components of the whole
digraph (level zero components) and each level contains
the strong connected components of the diagonal D-cores.
Moreover each directed edge points from a strong connected
component of some level to a super-digraph of it to the
previous level.
4. Frontiers for sets of entries: We also computed the fron-
tiers for single terms/authors for Wikipedia/DBLP digraphs
respectively. This is also extended, as defined above, to sets
of terms/authors. These indicate the robustness (represented
by the values of the indices) for the D-cores containing them.

D. Experimental results on Wikipedia

The D-core matrix and indices values. We processed the
Wikipedia digraph and computed for each (k, l) cell of the
D-core matrix the sizes of the resulting D-cores (see Figure 2)
as well as the sizes of the SCC’s in each of the D-core(i, i),
i.e. on the diagonal of the matrix as mentioned before.

We computed all the above defined indices for the global
Wikipedia digraph as well as for selected representative
terms and sets of terms (see Figure 4). For Wikipedia 2004
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Figure 4. Selected term-pages and sets of term-pages frontiers from Wikipedia.

the balanced collaboration index(BCI) value is 38 while the
respective D-core DC38,38 contains 237 nodes. For the same
digraph, the inherent collaboration index ICI is 36 and is
obtained for the D-cores DC39,33 that contains 206 nodes.
For the OCI index we obtain two OCI-optimal frontier
cells corresponding to the DC38,41 and DC36,43 D-cores
containing 228 and 233 nodes respectively. The robustness
of the global Wikipedia digraph is remarkably high at 0.963,
while the maximum value is 1, indicating a very robust
digraph.

D-cores frontiers for terms and sets of terms. Then we
investigate the cohesion and in/outlinks trade-off of D-cores
containing specific term-pages. These metrics are perceived
as indication of the collaborativeness and authority/hubness
of the digraphs containing these term-pages. Further we
present representative terms-pages D-core matrices evaluat-
ing them.

As defined in IV-A, the D-core diagram of a vertice
containing term X corresponds to the D-cores of the D-core
diagram of D whose vertices sets contain X . In Figure 4 we
see the D-cores matrix frontiers for the digraphs containing
the terms: Congress of Vienna, Continental Congress, Gre-
gorial Calendar, Progressive Conservative party of Canada,
and United States Congress. In each sub-figure, we see
the frontier of the respective digraphs degeneracy, each
presenting different features and trends. The frontier for the
term Continental Congress for example is presenting a low
BCI index with regard to the global digraph (the BCI index
is 38), as the the page is participating in D-cores with low
degeneracy. Its respective ICI index is (19.7) much lower
than the global ICI value 36. This is a rather “selfish” page
as it participates in D-cores dominated by in-links.

Contrary to the previous, the Gregorian Calendar page
participates in much more robust D-cores as its BCI index
reaches a high 26, while its OCI is a very high – occurring at
cell (42,12) – indicating a very “selfish behavior” dominated
by inlinks and thus having an authority digraph behavior. On
the other hand, the Congress of Vienna page is presenting a
rather extrovert behavior as its OCI index occurring at cell
(8,23), an indication of outlinks domination in the optimal

subgraphs. The robustness of the digraph is rather low with
a BCI index at 11, a low value as compared to the global
BCI 38.

In Figure 4 (right) we present the joint D-core matrix and
frontier of two term pages (Progressive Conservative Party of
Canada and United States Congress). The “together” fron-
tier represents the frontier of the D-core digraphs containing
both terms. The joint D-core frontier can exhibit much worse
robustness under degeneracy (i.e. removing in/out links) that
the individual ones. This can be the case when the D-core
frontiers of term pages with contradictory trends are put
together; as it is in our example, where the joint frontier
is at DC8,22. Thus we obtain a much weaker digraph than
the ones of the individual terms.

Thematic focus of Wikipedia SCCs. We computed the
SCCs of the Wikipedia D-cores DCi,i on the balanced
diagonal direction (BCI direction). The intuition is that the
SCCs are considered as digraph areas with high cohesion.
In Figure 3 the reader can see the cardinality of the SCCs in
each Wikipedia D-core DCi,i, the size of the SCCs and their
hierarchical containment relation as i increases along the
BCI axis. As we notice, starting in D-core DC1,1, there are
several SCCs moderately sized (<100 nodes) – excluding
one significantly larger sized SCC (>100K nodes in D-core
DC1,1. Many of the SCCs survive until the D-core DC32,32,
after this only the initial giant component survives until the
extreme BCI D-core DC38,38.

Further we investigate the thematic focus of the SCCs
as we study the D-cores along the BCI optimal axis, see
Table II. We observe a giant component that dominates
and almost all the pages contain the terms “time”. We
pruned the digraph, removing those pages and we noticed
a similar behavior, this time with the term Grammy awards
dominating the single giant SCC remaining. It is interesting
to stress that in D-core DC1,1 there are 1034 SCCs (apart
from the giant one). The size of the top-5 SCCs ranges
between 5 and 24 nodes while for each one there is a
remarkably narrow focus in their thematic area. For instance,
see Table II, the top sized SCC is about Wisconsin. The rest
of the SCCs are thematically focused in: Cynodonts species,



Iowa, Eurovision, History of the British penny, Submarines,
Wyoming. In D-core DC2,2 we have only 23 SCCs (apart
from the giant one). The size of the top-5 SCCs ranges
between 3 and 30 nodes while the thematic focus of the top
sized SCCs is to a large degree identical to the top SCCs in
D-core DC1,1 A similar trend continues as i increases along
the diagonal DCi,i.

E. Experimental results on DBLP

We processed the DBLP digraph and found for each cell
(k, l) of the D-core matrix the size of the resulting D-cores
(see Figure 2 bottom) as well as the number of strongly
connected components (SCC’s) in each of the D-cores DCi,i

– i.e. on the diagonal (see Figure 3 bottom). We computed
all the above defined indices for the global DBLP digraph
as well as for selected representative authors and sets of
authors.

DBLP E.F. Codd G. Weikum
BCI(k,l)/ Size of

optimal DC 42/188 22/913 41/221
ICI/(k,l)/angle/ 39/(30,48)/

size of optimal DC 32.01/220 19/(15,23) 38/(29,47)
42/〈(43,41)...
(38,46)/43.63

OCI/〈(k,l)/angle/ ,...,50.44/165,
size of optimal DC〉 188,217,187,

185,188〉 31.5/(42,21) 41.5/(38,45)
Robustness,Local - 0.457 0.966

Robustness, Global 0.966 0.952 0.928
ACI 35.17 23.083 33.66

AC H/A-angle (deg) 43.90 55.66 41.91

Table III
COLLABORATION INDICES VALUES FOR THE DBLP DIGRAPH

For the case of the DBLP digraph, the value of BCI is
42 (see Table III a summary of all indices values) while the
respective D-core DC42,42 contains 188 nodes (see the lower
part of Figure 2). For the same digraph, the inherent collabo-
ration index ICI is 39 and is obtained for the D-core DC30,48

that contains 220 nodes. For the OCI index we get a value
42, which occurs in six D-cores located at the positions:
(38, 46), (39, 45), (40, 44), (41, 43), (42, 42), (43, 41) on the
D-core matrix frontier. The robustness of the global DBLP
digraph is remarkably high at 0.966 indicating a very robust
to degeneracy digraph. It is evident that the DPLP digraph
has significant extrovert features (i.e. more out than in
citations, an expected result)

We also computed the SCCs of the DBLP D-cores DCi,i

on the balanced diagonal direction (BCI direction). In Fig-
ure 3, bottom, one can see the cardinality of the SCCs
in each DBLP D-core DCi,i, the size of the SCCs, and
their containment relation as i increases. As we notice,
starting in D-core DC1,1, there are few SCCs poor sized
(<10 nodes) – excluding one significantly larger sized SCC
(>1000 nodes in DC1,1 – that survive until DC4,4. After
this only the initial giant component continues until the

extreme BCI D-core DC42,42. This SCC apparently contains
the nodes/authors with a large number of mutual citations.

The giant SCC contains 188 authors1 presenting both top
publication activity, thus many outgoing citations, as well
as high rate of incoming citations. This group of authors
indeed contains well known and reputable scientists’ names
and looks pretty reasonable. Of course we have to stress the
partial coverage of the DBLP data set as its citation bulk
is before 2004. Also in the first years of its function the
emphasis is on database related papers.

We further studied the D-cores corresponding to specific
authors and computed the respective D-core matrices and
frontiers. We selected two characteristic cases of seminal
authors. In Figure 5 (left) we see the D-core matrix and
frontier for “E.F Codd”, founder of the relational database
area. His BCI extreme is DC42,23 indicating an intensive
inlinks (incoming citations) trend. This is natural as he was
authoring in the early years of computer science with few
previous works to cite. On the contrary his works enjoy a
very high number of citations, thus a high number of inlinks
in the citations digraph.

On the other hand a more modern seminal author G.
Weikum presents a very robust to degeneracy D-core struc-
ture for both in/out links tendency. This is explained by
the facts i. his works are highly cited during many years
and ii. he is intensively authoring and thus citing other
authors. In Figure 5 (right) we present the joint D-core
matrix and frontier for the two aforementioned authors. The
“together frontier” represents the frontier of the D-cores
that contain both E.F. Codd and G. Weikum author (nodes),
thus representing the D-cores (i.e. citation subgraphs) in
which the two aforementioned cite in common and they are
commonly cited.

VI. CONCLUSIONS

Cohesion and collaboration in graphs are cornerstone fea-
tures for their evaluation, especially with the advent of large
scale applications such as the Web, social networks, citations
graphs etc. The traditional way to look at graphs is though
the authority/hub notion based on per node in/out links
patterns. Other group evaluation measures do not take into
account the directed nature of the aforementioned graphs.
On the contrary, in this paper we stress the importance of
cohesion and collaboration among groups of nodes in the
case of directed graphs (digraphs). The intuition is that sub-
graphs with many in/out links among their nodes convey a
high degree of collaboration (adapted to the local application
semantics). Thus, we defined D-core, a novel extension of the
k-core concept to cover the directed graph case, as means
of representing their collaborative features based on their
robustness under degeneracy.

1The names of these authors can be accessed at: http://www.db-
net.aueb.gr/michalis/DCORE authors.html

http://www.db-net.aueb.gr/michalis/DCORE_authors.html
http://www.db-net.aueb.gr/michalis/DCORE_authors.html
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Figure 5. Representative authors D-core frontier from the DBLP digraph

Capitalizing on the D-core structure, we define interesting
and novel evaluation metrics and structures. Specifically, the
D-core matrix for a graph, its frontier and metrics to evaluate
a. the robustness of the directed graph under degeneracy
and b. the dominant patterns of the graph with regard to
inlinks/outlinks trade offs.

We evaluate these structures and metrics in large scale real
world graphs (i.e. a Web and a citation graph). The results
are interesting and justify the D-core structure and related
metrics as a new framework for evaluating collaboration
and cohesion in applications where directed graphs are the
dominant structures.

Future research will be focused on the following: 1. Deal-
ing with the temporal evolution of D-cores to capture collab-
oration evolution and 2. Using D-cores as a preprocessing
step in directed graph clustering. As D-cores are structures
of high cohesion, we seek to research if it can be a beneficial
pre-processing step for graph clustering, resulting in lower
overall complexity with good quality results.
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